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Abstract—In this talk we will give a short survey of weighted 
logics and their application in artificial intelligence. The emphasis 
will be on propositional real-valued probability logics, the main 
axiomatization issues, their relation with classical, modal logics 
and theoretical computer science, as well as their application in 
various expert systems. 

Index Terms—Fuzzy logic, probabilistic logics. 

I. INTRODUCTION 

IN broader sense, weighted logics can be understood as a 
tool for reasoning with incomplete or imprecise information 

(knowledge), where the uncertainty of the premises is 
expressed by qualitative or quantitative statements. Arguably, 
the most important types of weighted logics are possibility and 
necessity logics, fuzzy logics and probability logics. The 
common feature of all this logics is the fact that all of them 
allow more than two truth values. In the standard form the 
domain of truth values is the real unit interval . Though 
the syntax is far from standardized (practically each research 
team has its own notation), weighted logics utilize syntactical 
means to express degrees of truthfulness of certain sentences, 
as well as qualitative statements. For example, qualitative 
statements like “the seasonal flue is the probable cause for the 
patient’s fever”, or “the HPV is more probable cause for the 
observed cervical cancer than exposure to gamma radiation” 
have very simple mathematical representation in various fuzzy 
and probability logics. Similarly, quantitative statements like 
the incidence of monozygotic twinning is about 3/1000”, or in 
“around 30% cases of the coronary thrombosis are caused by 
smoking” can also be quite simply and naturally coded within 
the framework of weighted logics. 

Since the late sixties, probability theory has found application 
in development of various medical expert systems. Bayesian 
analysis, which is essentially an optimal path finding through 
a graph called Bayesian network, has been (and still is) 
successfully applied in so called sequential diagnostics, when 
the large amount of reliable relevant data is available. The 
graph (network) represents our knowledge about connections 
between studied medical entities (symptoms, signs, diseases); 
the Bayes formula is applied in order to find the path 
(connection) with maximal conditional probability. Moreover, 
a priori and conditional probabilities were used to define a 
number of measures designed specifically to handle 
uncertainty, vague notions and imprecise knowledge. Some of 
those measures were implemented in MYCIN in the early 

seventies [96]. The success of MYCIN has initiated 
construction of rule based expert systems in various fields.  

However, expert systems with the large number of rules (some 
of them like CADIAG-2 have more than 10000) are designed 
without any proper knowledge of mathematical logic. As an 
unfortunate consequence, most of them are turned to be 
inconsistent. On the other hand, the emergence of theoretical 
computer science as a new scientific discipline has led to 
discovery that the completeness techniques from mathematical 
logic are the only known methods for proving correctness of 
hardware and software. Consequently, mathematical logic has 
become a theoretical foundation of artificial intelligence. 

The last three decades has brought a rapid development of 
various formal logics that can describe plethora of AI settings. 
Arguably, the most significant among those are fuzzy logics 
[3,4,6,9], possibilistic logics [1-3] and probability logics. Our 
focus will be solely on the probability logics, since it is our 
field of expertise. 

II. PROBABILITY LOGICS 
Mathematical representation of probabilistic reasoning extends 
basic logical language (that involves propositional connectives 
and universal and existential quantifiers) with probabilistic 
operators and probabilistic quantifiers. Though the roots of 
probability logic can be traced at least to Leibnitz, the modern 
era of probability logic has started with the work of Jerome 
Keisler [11-13] throughout the seventies and the mid eighties 
of the XX century. It is worth mentioning that Bayesian 
analysis (application of Bayes formula in determination of 
optimal diagnostic/therapy strategies) has been successfully 
applied in early clinical decision support systems specialized 
in sequential diagnostics in the late sixties (see for instance 
[7]). 
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The modal representation of probability, i.e. introduction of 
modal like probability operators in classical reasoning, deeply 
motivated by intensive application in various expert systems, 
was initiated by Nils Nilsson [14,15] in the mid eighties and 
early nineties. A major breakthrough along these lines was 
made by Ronald Fagin, Joseph Halpern and Nimrod Megiddo 
[4], especially in terms of decidability and computational 
complexity (so called small model theorems). Though the 
introduced syntax was not modal per se, it was very similar to 
it and the developed modal probability semantics has become 
the standard one. 

The first probability logic with unary modal probability 
operator was introduced by Miodrag Rašković in the early 
nineties [20]. Soon after, a rather rapid development of the 
subject has followed. We shall track a selection of the existing 
research in the field of probability logic: primarily our own 
contributions, “seasoned” with certain papers (books) that are 
closely related to our work.  

To begin with, an extensive study of finitely additive 
probability measures was given in [19]. Historical 
development, various boundaries of probability functions and 
many other important concepts regarding sentential 
probability logics are given in [8]. An extensive study of 
uncertainty and its connection with probability was given in 
[10]. Various formalizations of probability with variety of 
scopes - simple probabilities, higher order (nesting of 
probability operators) probabilities, conditional probabilities, 
representation of default reasoning etc. are presented in past 
three decades by numerous research groups. Usually, 
axiomatizations involve wide range of probabilistic 
distributions, i.e. there are very few restrictions on sematical 
functions other than the basic condition that they have to be 
finitely additive probabilities. Then, as probabilities are 
generally not truth-functional, the best one can do is to 
calculate bounds on probabilities of conclusions starting from 
probabilities of assumptions [8].  

One of the main proof-theoretical problems is providing an 
axiom system that would be strongly complete in the sense 
that every consistent theory has a model. This problem 
originates from the inherent non-compactness of so called non 
restricted real-valued probability logics. Namely, in such 
formalisms it is possible to define an inconsistent infinite set 
of formulas, every finite subset of which is consistent. For 
example, one such theory is given by   

. 

As it was pointed in [16,22], there is an unpleasant 
consequence of finitary axiomatization in that case: there exist 
unsatisfiable sets of formulas that are consistent with respect 
to the assumed finite axiomatic system (since all finite subsets 
are consistent and deductions are finite sequences). Another 
important theoretical problem is related to the decidability 

issue.   
 logic. We shall briefly describe the  

probability logic. Detailed exposition can be found in [17]. It 
is an extension of the classical propositional logic with 
probability operators of the form , where  can be any 
rational number between  and  (including both of them). 
The initial syntactical layer is formed of classical 
propositional formulas; they will be denoted by ,  and , 
indexed or primed if necessary. Basic probability formulas are 
expressions of the form 

 

The intended meaning of  is rather obvious: the 
probability of  is at least . Finally, complex probability 
formulas are formed from the basic ones by application of 
logical connectives: negation (denoted by ¬) and implication 
(denoted by ). Probability formulas will be denoted by ,  
and , indexed or primed if necessary. Some standard 
abbreviations (e.g. formal introduction of conjunction, 
disjunction and equivalence) are defined in the usual way: 

• ;

• ;

• ;

• ;

• ;

• ;

• .

Due to the modal nature of probability operators, the standard 
probabilistic semantics is defined on so called probability 
Kripke structures. A probability Kripke structure is any triple 

 with the following properties: 

1.  is a nonempty subset of the set of all classical 
evaluations ;

2.  is an algebra of sets (it is nonempty and closed 
under intersection, union and complement) that 
contains all sets of the form . Here by  we 
have denoted the set of all evaluations satisfying ;

3.  is a finitely additive probability 
measure.

The satisfiability relation  is defined in the following way: 

•  iff ;

•  iff ;

{ P>0α } ∪  {P< 1
n

α :  n is a positive integer}

L PP2 L PP2

P≥s s
0 1

α β γ

P≥sα .

P≥sα
α s

→ A B
C

A ∧ B =def ¬(A → ¬B)

A ∨ B =def ¬A → B

A ↔ B =def (A → B) ∧ (B → A)

P≤sα =def P≥s ¬α

P>sα =def P≥sα ∧ ¬P≤sα

P<sα =def P≤sα ∧ ¬P≥sα

P=sα =def P≥sα ∧ P≤sα

(W, H, μ)

W
{0,1}Var

H

[α] [α]
α

μ :H ⟶ [0,1]

⊨

(W, H, μ) ⊨ α [α] = W

(W, H, μ) ⊨ P≥sα μ([α]) ≥ s
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•  iff ;

•  iff either , or 
 and .

The axioms of the  logic are the following ten schemata: 

• Ax1: ;

• A x 2 : 

;

• Ax3: ;

• Ax4: ;

• A x 5 : 
;

• Ax6: ;

• Ax7: ;

• Ax8:  for all ;

• A x 9 : 

;

• Ax10: .

The inference rules of the  logic are the following one: 

• Modus ponens for classical formulas: from  and 
 infer ;

• Modus ponens for probability formulas: from  and 
 infer ;

• Necessitation: from  infer ;

• Archimedean rule: from the set of premises 
 infer .

The notion of deduction differs from the classical one only in 
the length of the inference: since Archimedean rule has 
countably many premises, the length of the inference can be 
any countable successor ordinal.  

Intuitively, Archimedean rule should be understood in the 
following way: if the probability of  is infinitely close to the 
rational number , then it must be equal to . As a 
consequence, “problematic” finitely satisfiable but 
unsatisfiable theories such as previously mentioned theory  

 

become inconsistent in . The proof of the strong 
completeness theorem for  logic can be found in [17].  

Decidability and complexity. Any potential or actual 
application of weighted logics in artificial intelligence is 
closely related to the satisfiability problem and related 
computational complexity estimation. Here we shall outline 
the satisfiability procedure for the -formulas and give its 
exact complexity. So, let . Recall that an atom  of 

 is a formula of the form , where  
is either   or , and  are all primitive 
propositions appearing in . For example, if  is the formula 

, then its atoms are , ,  
and . 

Note that atoms are pairwise disjoint. Hence, for any 
probability measure  and any pair of atoms  and  
( ) we have that 

. 

As a next step we can equivalently transform the given 
formula  into its complete disjunctive normal form  

where: 

•  is one of probability operators  and ;

•  d e n o t e s t h e f a c t t h a t t h e 
propositional formula which is in the complete 
disjunctive normal form, i.e. the propositional 
formula is a disjunction of the atoms of .

Example. The complete disjoint normal form of the formula  
defined by  

 

is disjunction of the following four formulas: 

•

;

•

;

•

;

•

. 

(W, H, μ) ⊨ ¬A (W, H, μ) ⊭ A

(W, H, μ) ⊨ A → B (W, H, μ) ⊭ A
(W, H, μ) ⊨ A (W, H, μ) ⊨ B

L PP2

α → (β → α)

(α → (β → γ)) → ((α → β) → (α → γ))
(¬β → ¬α) → (α → β)
A → (B → A)

(A → (B → C )) → ((A → B) → (A → C ))
(¬B → ¬A) → (A → B)

P≥0α

P≥sα → P>rα r < s

P≥sα ∧ P≥r β ∧ P=0(α ∧ β) → P≥min(r + s,  1)(α ∨ β)

P≤sα ∧ P≤r β → P≤min(r + s,  1)(α ∨ β)
L PP2

α
α → β β

A
A → B B

α P=1α

{A → P≥rα :r < s} A → P≥sα

α
s s

{ P>0α } ∪  {P< 1
n

α :  n is a positive integer}

L PP2
L PP2

L PP2
A ∈  ForP a

A ± p1 ∧ ⋯ ∧   ±  pn ± pi
pi ¬ pi p1,  …,  pn

A A
P≥0.9(p ∨ q) p ∧ q p ∧ ¬q ¬p ∧ q

¬p ∧ ¬q

μ ai aj
ai ≠ aj

μ(ai ∨ aj)  = μ(ai) + μ(aj)

A

DNF(A) =
m

⋁
i=1

ki

⋀
j=1

Xi, j(p1,  …,  pn),   

Xi, j P≥si, j P<si, j

Xi, j(p1,  …,  pn)

A

A

P<0.1p ∨ P≥0.8q

P<0.1((p ∧ q) ∨ (p ∧ ¬q)) ∧ P≥0.8((p ∧ q) ∨ (¬p ∧ q))

P<0.1((p ∧ q) ∨ (p ∧ ¬q)) ∧ P<0.8((p ∧ q) ∨ (¬p ∧ q))

P≥0.1((p ∧ q) ∨ (p ∧ ¬q)) ∧ P≥0.8((p ∧ q) ∨ (¬p ∧ q))

P≥0.1((p ∧ q) ∨ (p ∧ ¬q)) ∧ P<0.8((p ∧ q) ∨ (¬p ∧ q))
□
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The logic  is decidable, i.e. the satisfiability and validity 
of -formulas is algorithmically solvable. Firstly we will 
outline satisfiablilty algorithm in general case, then we will 
apply it on the previous example. 

The first step is to transform the given -formula  to its 
complete disjunctive normal form  

. 

So, satisfiability of  is equivalently reduced to the 
satisfiability of . Thus,  is satisfiable iff at least 
one disjunct from  is satisfiable. Let the measure of 
the atom  be denoted by . We use an expression of the 
form  to denote that the atom  appears 
in the propositional part of .  

Furthermore, a disjunct  from 

 is satisfiable iff the following system of linear 
equalities and inequalities is satisfiable:  

 

 

 

 

 

 

 

where  if , otherwise . 

Since the satisfiability of  is reduced to the linear systems 
solving problem, the satisfiability problem for -logic is 
decidable. Finally, since  is valid iff  is unsatisfiable, the 
validity problem is also decidable. 

Back to the previous example: the atoms of the given 
probability formula  are , 

,  and . By  we will denote 
their unknown probabilities. The first disjunct in  
generates the following system: 

 

 

 

 

 

 

. 

One solution of this system is given by , 
 and , so the formula  is satisfiable. 

Concerning complexity estimation of the decision procedure, 
we shall show that it is NP-complete. Indeed, the lower bound 
follows from the complexity of the same problem for classical 
propositional logic. The upper bound is a consequence of the 
NP-complexity of the satisfiability problem for linear weight 
formulas from [4]. 

III.CONCLUSION 

Since the late sixties, probability logics have been used in 
construction of various expert systems and decision support 
systems in medicine and other areas. Development of fuzzy 
sets and systems in mid-sixties and the corresponding rapid 
development in engineering community (fuzzy controllers) 
have led to extensive development of the corresponding 
mathematics and its integration in automated reasoning and 
various problem solutions in the field of artificial intelligence. 
In the mid-eighties Didier Dubois developed possibilistic logic 
and together with Henri Prade formed a research team that 
have integrated this new type of logic as another relevant and 
useful logic for modeling uncertainty. 

Today weighted logics represent a thriving research area for 
mathematicians, theoretical computer scientists and various 
engineers.    
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