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Abstract

When the syntactical unification is considered, for two unifiable terms there
is always a unifier which is more general (smaller) than every other (an MGU).
However, in a general case of E-unification, there is no MGU. Instead, we work
with (minimal) dense sets of unifiers. The type of unification problem is determined
by the minimal cardinality of a minimal dense set of unifiers. We present here the
theory of types in a way which differs from usual.

1 Introduction

The idea of unification appeared in Herbrand’s works, but the (syntactical) unification is
formally presented in [Robinson 1965] for the first time. It is the basis of the resolution
principle, the main principle in automated theorem proving. The E-unification is a natural
generalization of the syntactical unification.

In section 2, basic facts about syntactical unification are presented along with the
first, most intuitive, algorithm for it. In section 3, E-unification and types of unification
problems and equational theories are introduced and some examples are given. The
theorem 3.1 is a result of this paper.

Papers [Baader 1989], [Büttner 1988], [Franzen 1992] consider types in some special
cases.

2 Syntactic Unification

Term “syntactic unification” refers to the process of making two terms syntactically identi-
cal by substituting their variables with terms. In this subsection, we will formally present
the problem of the syntactical unification and give the basic algorithm which solves it.

Let L be a first-order language1 without relational symbols, V be the set of all variables
and T be the set of all terms of L. A substitution is a function from V to T which is equal
to the identity mapping almost everywhere. For a substitution σ, we define its extension
σ from V to T by induction on length of terms as follows:

1. σ(x) = σ(x), for a variable x;

2. σ(c) = c, for a constant c;

3. σ(t) = f(σ(t1), . . . , σ(tn)), for a term t = f(t1, . . . , tn).

1In practice, this language is countable.
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We will denote σ also with σ and write tσ for σ(t). According to this convention,
the composition of substitutions σ and θ in t should be denoted by tσθ, so we will also
introduce the convention of denoting the composition of those substitutions by σθ (instead
of standard θσ). If {x1, . . . , xn} is the set on which substitution σ differs from identity
mapping, than we shall write this substitution as {x1 7→ x1σ, . . . , xn 7→ xnσ}. Two terms t
and s are said to be unifiable if there is a substitution σ such that tσ = sσ. An unification
problem is a pair of terms (for which we are trying to find out if they are unifiable). When
we consider a syntactical unification problem, the default language in which we work is
the minimal one, unless it is said otherwise.

Example 2.1. Terms t = f(t1, . . . , tn) and s = g(s1, . . . , sm), where ti and si are some
terms and f and g are different functional symbols, are not unifiable. For, every tσ begins
with symbol f , while sσ begins with g, so they cannot be equal.

If t is a proper subterm of s, than every tσ is a proper subterm of sσ and we have
again that t and s are ununifiable.

Example 2.2. Terms f(g(x), g(h(z))) and f(z, g(y)) are unifiable. For,

σ = {y 7→ h(g(x)), z 7→ g(x)}

is unifier for them. It can be easily seen that some θ is an unifier for these terms iff
θ = σρ, for some ρ.

It is obvious that if two terms are unifiable, they have infinitely many unifiers. How-
ever, as in example 2.2, there is a unifier from which all others may be obtained. We will
call it a most general unifier or an MGU.

Definition 2.1. A substitution σ is more general than a substitution θ (we write σ 4 θ)
if there is a substitution ρ such θ = σρ. An MGU for terms t and s is a unifier for them
which is more general than every other.

The relation 4 is quasi-ordering of the set of all substitutions (it is reflexive and transi-
tive) and ≈=4 ∩ < is equivalence relation on that set. There is a natural characterisation
of ≈ which relies on a notion of a variable-renaming substitution. Those substitutions
are exactly all bijective substitutions from V to V. Now we have that σ ≈ θ iff there is a
variable-renaming substitution ρ such that σ = θρ. The proof of this result can be found
in [Lassez, Maher, Mariott 1987]. We are ready to state the main theorem about MGUs.

Theorem 2.1. For unifiable terms t and s, there exists MGU and it is unique up to ≈.

For practical purposes, it is of great importance to know an algorithm for checking if
two terms are unifiable and finding an MGU if they are. We present here a pseudo-code
of the most intuitive one (firstly described in [Robinson 1965]), although it is not very
efficient. For more efficient algorithms, a proof of correctness of the algorithm given here
and its analysis see [Baader, Snyder 1999]. An implementation of an unification algorithm
is given in [Prešić 1991].

The algorithm uses an algorithm for finding the composition of two substitutions. One
of these is obvious from the next description of the composition. For two terms σ and θ
let Vσ = {v ∈ V : vσ ̸= v} and Vθ = {v ∈ V : vθ ̸= v}. Now we have

σθ = {⟨v, vσθ⟩ : v ∈ Vσ} ∪ {⟨v, vθ⟩ : v ∈ Vθ \ Vσ} ∪ idV\(Vσ∪Vθ).

The unification algorithm mentioned above is following. Be aware of that the function is
closed after “return” (like in “C”) and that the function returns ’/’ when t and s are not
unifiable.
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substitution mgu(term t, term s)
begin
if t = s = x then return {};
if t = x and x occurs in s then return ’/’;
if t = x then return {x 7→ s};
if s = x and x occurs in t then return ’/’;
if s = x then return {x 7→ t};
if t = f(t1, ..., tn) and s = g(s1, ..., sm) then

if f ̸= g then return ’/’;
else

begin
substitution σ := {};
for i := 1 to n do

begin
ti := tiσ;
si := siσ;
θ := mgu(ti,si);
if θ = ’/’ then return ’/’;
σ := σθ;
end

return σ;
end

end

3 E-unification

When E-unification is considered, the intention is to make two terms equal modulo E by
applying a substitution. This is a generalization of syntactical unification. All symbols
introduced in previous subsection have same meaning here.

Let E be a theory2 over a language L consisting only of identities. These theories are
called equational. Two terms s and t are said to be equal modulo E (denoted by s =E t)
if E ⊢ s = t and they are said to be unifiable modulo E if there exists a substitution σ
such that sσ =E tσ. An E-unification problem is (again) a pair of terms. It is clear that
if E = 0, we are talking about syntactical unification.

The following quasi-ordering is of interest here.

Definition 3.1. A substitution σ is more general modulo E than a substitution θ (de-
noted by σ 4E θ) if there is a substitution ρ such that xθ =E xσρ for all x ∈ V. The
corresponding equivalence relation is denoted by ≈E.

Example 3.1. Let Cf be the theory consisting of the axiom f(x, y) = f(y, x) (com-
mutativity) over the language L = {f, a, b} (a and b are constant symbols). Let us
consider terms s = f(x, y) and t = f(a, b). Obviously, they are unifiable modulo Cf and
σ = {x 7→ a, y 7→ b} and θ = {x 7→ b, y 7→ a} are unifiers for them. Every other unifier is
less general than one of them. Since they are incomparable, these terms have no MGU.

When considering E-unification, instead of an MGU, we are interested in a set which
has a similar property of generality - each unifier for the terms should be less general than

2In practice, E is a recursive theory.
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a unifier from the considered set. These sets are naturally called dense. Among them,
particularly interesting are minimal ones - those containing no comparable elements (anti-
chains).

Example 3.2. If terms s and t are syntactically unifiable and if σ is an MGU, than {σ}
is a minimal dense. This shows that the minimal dense sets generalize MGUs.

In example 3.1 {σ, θ} are minimal dense.

Example 3.3. Let AIf be a theory consisting of axioms f(x, f(y, z)) = f(f(x, y), z) (asso-
ciativity) and f(x, x) = x (”f is idempotent”) over the language L = {f}. In [Baader 1986]
it is shown that unification problem with terms f(x, f(y, x)) and f(x, f(z, x)) has no min-
imal dense set of unifiers.

For this reason we introduce an object ∞ greater than all cardinals which allows us
to make the following definition.

Definition 3.2. The type of an E-unification problem (s, t) is defined with

τs,t = min{|D| : D is a minimal dense set of unifiers for (s, t)}.

The type of a theory E is defined with

τE = sup{τs,t : (s, t) is an E-unification problem}.

In practice, we consider only countable languages, so a type is an element of the set
[0, ω] ∪ {∞}.

Example 3.4.

1. Terms s and t are E-unifiable iff τs,t > 0.

2. The type of a syntactical unification problem is 1 if the terms are unifiable and 0 if
they are not (see example 3.2). According to this, the type of syntactical unification
is τ0 = 1.

3. The type of the theory AIf is ∞ (see example 3.3).

4. The unification problem in example 3.1 is of type 2.

In preceding, a constant symbol is considered to be 0-nary functional symbol.

Definition 3.3. A term-pattern for language L is the mapping from the set of all func-
tional symbols to ω that differs from 0 only in finitely many points. A pattern of term t,
denoted by Ft, is a term-pattern which assigns to each functional symbol the number of
times that it occurs in t. The variable-number of a term-pattern F is defined to be

vF = max{the number of variables in t : Ft = F}.

Equational theory E is said to be pattern-preservative if for every identity t = s in it, the
equation Ft = Fs is satisfied.

Theorem 3.1. If E is a pattern-preservative equational theory, than τE < ∞.
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Proof. Let s and t be E-unifiable terms, U be the set of all unifiers for them and M be a
set of all minimal unifiers for them, with no equivalent unifiers in it. Let σ be a unifier for
these terms. Assume that σ = {x 7→ t} (the following is easily adjustable to the general
case). Let v1, . . . , vvFt be different variables, different from x. Consider the set N of all
unifiers of the form {x 7→ s} which are more general than σ, where all variables of s are
among variables vi. Obviously Fs 6 Ft, so N is finite and non-empty and, consequently,
it contains a 4E-minimal element θ. θ is equivalent to an element of M . Otherwise, there
is θ1 ≺E θ, so θ2 = {x 7→ xθ1} ≺E θ is equivalent to an element of N . This contradicts to
the minimality of θ. We have just shown that M is dense. It is obvious that it is minimal,
so the proof is complete.

�
Example 3.5.

1. By previous theorem, theory Cf from example 3.1 is of type 6 ω. We will show that
its type is exactly ω. For, consider the unification problem of terms s and t deter-
mined by full binary trees S and T of hight n+2, whose all elements except leaves are
equal to f , leaves of first are x1, y1, . . . , x2n , y2n and leaves of second are a, b, . . . , a, b.
The set D of all substitutions of the form {x1 7→ α1, y1 7→ β1, . . . , x2n 7→ α2n , y2n 7→
β2n}, where {αi, βi} = {a, b}, is minimal dense and every other minimal dense set is
obviously of same cardinality as D. So, τs,t = |D| = 22

n
and, consequently, τCf

= ω.

2. Let us consider the theory A consisting of the axiom f(f(x, y), z) = f(x, f(y, z))
over the language L = {f, a} and the unification problem of terms s = f(x, a) and
t = f(a, x). It is obvious that each dense set of unifiers must contain an element
σ such that xσ =A f(a, f(a, . . . f(a, a) . . .)), where the term on the right side is of
any possible length. Hence, a dense set must be infinite, so τs,t > ω. By previous
theorem, τA < ∞ and we have τs,t = τA = ω.

4 Conclusion and Discussion

For equational theory E, the information about its type should give us the first insight
in the unification in that theory. A better insight should be obtained by classifying sets
of problems by their types. We pointed out to some central identities which should be
considered and gave some facts about theories containing them. Theories of semigroups
(mentioned here), monoids, Boolean algebras are among those of interest in this subject.
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